If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+13.9x+2.2=0
a = 1; b = 13.9; c = +2.2;
Δ = b2-4ac
Δ = 13.92-4·1·2.2
Δ = 184.41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13.9)-\sqrt{184.41}}{2*1}=\frac{-13.9-\sqrt{184.41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13.9)+\sqrt{184.41}}{2*1}=\frac{-13.9+\sqrt{184.41}}{2} $
| -4x-(-8x-33)=11x+5 | | 8y+22=-3y+30 | | x2+40x−3=0 | | -6a+33=-6a+3 | | -3(5-x)=35-5x | | -6a+24=4a+33 | | 126=10x+6 | | 3(3m-2)=0 | | -8y+42=9y+32 | | -9y+30=-5y+38 | | (x-2)*(x^2+2)=0 | | 8a+8=3a+20 | | (x-2)(x^2+2)=0 | | xxx-x=x-15 | | 15=(3x-3) | | -5y+40=3y+21 | | 4a+2=9a+27 | | -5y-6=-16 | | -11y+40=7y+12 | | −15x−18=5x+82. | | p-6=14-p | | -8a+3=11a+38 | | 18-5f=2f+5 | | 10a+29=-3a+2 | | 3k-8=23 | | 2÷7x+3=9÷2x-5 | | 15^2x=15 | | 3x=x+2.25 | | -11a+24=-10a+4 | | 8a+34=11a+29 | | 8-3-2x=3x | | -10a+39=2a+43 |